The Third Branch Of Physics Essays On Scientific Computing Msc

Computer science is the study of the theory, experimentation, and engineering that form the basis for the design and use of computers. It is the scientific and practical approach to computation and its applications and the systematic study of the feasibility, structure, expression, and mechanization of the methodical procedures (or algorithms) that underlie the acquisition, representation, processing, storage, communication of, and access to, information. An alternate, more succinct definition of computer science is the study of automating algorithmic processes that scale. A computer scientist specializes in the theory of computation and the design of computational systems.[1]

Its fields can be divided into a variety of theoretical and practical disciplines. Some fields, such as computational complexity theory (which explores the fundamental properties of computational and intractable problems), are highly abstract, while fields such as computer graphics emphasize real-world visual applications. Other fields still focus on challenges in implementing computation. For example, programming language theory considers various approaches to the description of computation, while the study of computer programming itself investigates various aspects of the use of programming language and complex systems. Human–computer interaction considers the challenges in making computers and computations useful, usable, and universally accessible to humans.

History[edit]

Main article: History of computer science

The earliest foundations of what would become computer science predate the invention of the modern digital computer. Machines for calculating fixed numerical tasks such as the abacus have existed since antiquity, aiding in computations such as multiplication and division. Further, algorithms for performing computations have existed since antiquity, even before the development of sophisticated computing equipment.

Wilhelm Schickard designed and constructed the first working mechanical calculator in 1623.[4] In 1673, Gottfried Leibniz demonstrated a digital mechanical calculator, called the Stepped Reckoner.[5] He may be considered the first computer scientist and information theorist, for, among other reasons, documenting the binary number system. In 1820, Thomas de Colmar launched the mechanical calculator industry[note 1] when he released his simplified arithmometer, which was the first calculating machine strong enough and reliable enough to be used daily in an office environment. Charles Babbage started the design of the first automatic mechanical calculator, his Difference Engine, in 1822, which eventually gave him the idea of the first programmable mechanical calculator, his Analytical Engine.[6] He started developing this machine in 1834, and "in less than two years, he had sketched out many of the salient features of the modern computer".[7] "A crucial step was the adoption of a punched card system derived from the Jacquard loom"[7] making it infinitely programmable.[note 2] In 1843, during the translation of a French article on the Analytical Engine, Ada Lovelace wrote, in one of the many notes she included, an algorithm to compute the Bernoulli numbers, which is considered to be the first computer program.[8] Around 1885, Herman Hollerith invented the tabulator, which used punched cards to process statistical information; eventually his company became part of IBM. In 1937, one hundred years after Babbage's impossible dream, Howard Aiken convinced IBM, which was making all kinds of punched card equipment and was also in the calculator business[9] to develop his giant programmable calculator, the ASCC/Harvard Mark I, based on Babbage's Analytical Engine, which itself used cards and a central computing unit. When the machine was finished, some hailed it as "Babbage's dream come true".[10]

During the 1940s, as new and more powerful computing machines were developed, the term computer came to refer to the machines rather than their human predecessors.[11] As it became clear that computers could be used for more than just mathematical calculations, the field of computer science broadened to study computation in general. Computer science began to be established as a distinct academic discipline in the 1950s and early 1960s.[12][13] The world's first computer science degree program, the Cambridge Diploma in Computer Science, began at the University of CambridgeComputer Laboratory in 1953. The first computer science degree program in the United States was formed at Purdue University in 1962.[14] Since practical computers became available, many applications of computing have become distinct areas of study in their own rights.

Although many initially believed it was impossible that computers themselves could actually be a scientific field of study, in the late fifties it gradually became accepted among the greater academic population.[15][16] It is the now well-known IBM brand that formed part of the computer science revolution during this time. IBM (short for International Business Machines) released the IBM 704[17] and later the IBM 709[18] computers, which were widely used during the exploration period of such devices. "Still, working with the IBM [computer] was frustrating […] if you had misplaced as much as one letter in one instruction, the program would crash, and you would have to start the whole process over again".[15] During the late 1950s, the computer science discipline was very much in its developmental stages, and such issues were commonplace.[16]

Time has seen significant improvements in the usability and effectiveness of computing technology.[19] Modern society has seen a significant shift in the users of computer technology, from usage only by experts and professionals, to a near-ubiquitous user base. Initially, computers were quite costly, and some degree of human aid was needed for efficient use—in part from professional computer operators. As computer adoption became more widespread and affordable, less human assistance was needed for common usage.

See also: History of computing and History of informatics

Contributions[edit]

Despite its short history as a formal academic discipline, computer science has made a number of fundamental contributions to science and society—in fact, along with electronics, it is a founding science of the current epoch of human history called the Information Age and a driver of the information revolution, seen as the third major leap in human technological progress after the Industrial Revolution (1750–1850 CE) and the Agricultural Revolution (8000–5000 BC).

These contributions include:

  • The start of the "Digital Revolution", which includes the current Information Age and the Internet.[21]
  • A formal definition of computation and computability, and proof that there are computationally unsolvable and intractable problems.[22]
  • The concept of a programming language, a tool for the precise expression of methodological information at various levels of abstraction.[23]
  • In cryptography, breaking the Enigma code was an important factor contributing to the Allied victory in World War II.[20]
  • Scientific computing enabled practical evaluation of processes and situations of great complexity, as well as experimentation entirely by software. It also enabled advanced study of the mind, and mapping of the human genome became possible with the Human Genome Project.[21]Distributed computing projects such as Folding@home explore protein folding.
  • Algorithmic trading has increased the efficiency and liquidity of financial markets by using artificial intelligence, machine learning, and other statistical and numerical techniques on a large scale.[24] High frequency algorithmic trading can also exacerbate volatility.[25]
  • Computer graphics and computer-generated imagery have become ubiquitous in modern entertainment, particularly in television, cinema, advertising, animation and video games. Even films that feature no explicit CGI are usually "filmed" now on digital cameras, or edited or post-processed using a digital video editor.[26][27]
  • Simulation of various processes, including computational fluid dynamics, physical, electrical, and electronic systems and circuits, as well as societies and social situations (notably war games) along with their habitats, among many others. Modern computers enable optimization of such designs as complete aircraft. Notable in electrical and electronic circuit design are SPICE, as well as software for physical realization of new (or modified) designs. The latter includes essential design software for integrated circuits.[citation needed]
  • Artificial intelligence is becoming increasingly important as it gets more efficient and complex. There are many applications of AI, some of which can be seen at home, such as robotic vacuum cleaners. It is also present in video games and on the modern battlefield in drones, anti-missile systems, and squad support robots.
  • Human–computer interaction combines novel algorithms with design strategies that enable rapid human performance, low error rates, ease in learning, and high satisfaction. Researchers use ethnographic observation and automated data collection to understand user needs, then conduct usability tests to refine designs. Key innovations include the direct manipulation, selectable web links, touchscreen designs, mobile applications, and virtual reality.

Etymology[edit]

See also: Informatics § Etymology

Although first proposed in 1956,[16] the term "computer science" appears in a 1959 article in Communications of the ACM,[28] in which Louis Fein argues for the creation of a Graduate School in Computer Sciences analogous to the creation of Harvard Business School in 1921,[29] justifying the name by arguing that, like management science, the subject is applied and interdisciplinary in nature, while having the characteristics typical of an academic discipline.[28] His efforts, and those of others such as numerical analystGeorge Forsythe, were rewarded: universities went on to create such programs, starting with Purdue in 1962.[30] Despite its name, a significant amount of computer science does not involve the study of computers themselves. Because of this, several alternative names have been proposed.[31] Certain departments of major universities prefer the term computing science, to emphasize precisely that difference. Danish scientist Peter Naur suggested the term datalogy,[32] to reflect the fact that the scientific discipline revolves around data and data treatment, while not necessarily involving computers. The first scientific institution to use the term was the Department of Datalogy at the University of Copenhagen, founded in 1969, with Peter Naur being the first professor in datalogy. The term is used mainly in the Scandinavian countries. An alternative term, also proposed by Naur, is data science; this is now used for a distinct field of data analysis, including statistics and databases.

Also, in the early days of computing, a number of terms for the practitioners of the field of computing were suggested in the Communications of the ACMturingineer, turologist, flow-charts-man, applied meta-mathematician, and applied epistemologist.[33] Three months later in the same journal, comptologist was suggested, followed next year by hypologist.[34] The term computics has also been suggested.[35]In Europe, terms derived from contracted translations of the expression "automatic information" (e.g. "informazione automatica" in Italian) or "information and mathematics" are often used, e.g. informatique (French), Informatik (German), informatica (Italian, Dutch), informática (Spanish, Portuguese), informatika (Slavic languages and Hungarian) or pliroforiki (πληροφορική, which means informatics) in Greek. Similar words have also been adopted in the UK (as in the School of Informatics of the University of Edinburgh).[36] "In the U.S., however, informatics is linked with applied computing, or computing in the context of another domain."[37]

A folkloric quotation, often attributed to—but almost certainly not first formulated by—Edsger Dijkstra, states that "computer science is no more about computers than astronomy is about telescopes."[note 3] The design and deployment of computers and computer systems is generally considered the province of disciplines other than computer science. For example, the study of computer hardware is usually considered part of computer engineering, while the study of commercial computer systems and their deployment is often called information technology or information systems. However, there has been much cross-fertilization of ideas between the various computer-related disciplines. Computer science research also often intersects other disciplines, such as philosophy, cognitive science, linguistics, mathematics, physics, biology, statistics, and logic.

Computer science is considered by some to have a much closer relationship with mathematics than many scientific disciplines, with some observers saying that computing is a mathematical science.[12] Early computer science was strongly influenced by the work of mathematicians such as Kurt Gödel, Alan Turing, Rózsa Péter and Alonzo Church and there continues to be a useful interchange of ideas between the two fields in areas such as mathematical logic, category theory, domain theory, and algebra.[16]

The relationship between computer science and software engineering is a contentious issue, which is further muddied by disputes over what the term "software engineering" means, and how computer science is defined.[38]David Parnas, taking a cue from the relationship between other engineering and science disciplines, has claimed that the principal focus of computer science is studying the properties of computation in general, while the principal focus of software engineering is the design of specific computations to achieve practical goals, making the two separate but complementary disciplines.[39]

The academic, political, and funding aspects of computer science tend to depend on whether a department formed with a mathematical emphasis or with an engineering emphasis. Computer science departments with a mathematics emphasis and with a numerical orientation consider alignment with computational science. Both types of departments tend to make efforts to bridge the field educationally if not across all research.

Philosophy[edit]

Main article: Philosophy of computer science

A number of computer scientists have argued for the distinction of three separate paradigms in computer science. Peter Wegner argued that those paradigms are science, technology, and mathematics.[40]Peter Denning's working group argued that they are theory, abstraction (modeling), and design.[41] Amnon H. Eden described them as the "rationalist paradigm" (which treats computer science as a branch of mathematics, which is prevalent in theoretical computer science, and mainly employs deductive reasoning), the "technocratic paradigm" (which might be found in engineering approaches, most prominently in software engineering), and the "scientific paradigm" (which approaches computer-related artifacts from the empirical perspective of natural sciences, identifiable in some branches of artificial intelligence).[42]

Areas of computer science[edit]

Further information: Outline of computer science

As a discipline, computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software.[43][44]CSAB, formerly called Computing Sciences Accreditation Board—which is made up of representatives of the Association for Computing Machinery (ACM), and the IEEE Computer Society (IEEE CS)[45]—identifies four areas that it considers crucial to the discipline of computer science: theory of computation, algorithms and data structures, programming methodology and languages, and computer elements and architecture. In addition to these four areas, CSAB also identifies fields such as software engineering, artificial intelligence, computer networking and communication, database systems, parallel computation, distributed computation, human–computer interaction, computer graphics, operating systems, and numerical and symbolic computation as being important areas of computer science.[43]

Theoretical computer science[edit]

Main article: Theoretical computer science

Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All studies related to mathematical, logic and formal concepts and methods could be considered as theoretical computer science, provided that the motivation is clearly drawn from the field of computing.

Data structures and algorithms[edit]

Data structures and algorithms is the study of commonly used computational methods and their computational efficiency.

Theory of computation[edit]

Main article: Theory of computation

According to Peter Denning, the fundamental question underlying computer science is, "What can be (efficiently) automated?"[12] Theory of computation is focused on answering fundamental questions about what can be computed and what amount of resources are required to perform those computations. In an effort to answer the first question, computability theory examines which computational problems are solvable on various theoretical models of computation. The second question is addressed by computational complexity theory, which studies the time and space costs associated with different approaches to solving a multitude of computational problems.

The famous P = NP? problem, one of the Millennium Prize Problems,[46] is an open problem in the theory of computation.

Information and coding theory[edit]

Main articles: Information theory and Coding theory

Information theory is related to the quantification of information. This was developed by Claude Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and communicating data.[47] Coding theory is the study of the properties of codes (systems for converting information from one form to another) and their fitness for a specific application. Codes are used for data compression, cryptography, error detection and correction, and more recently also for network coding. Codes are studied for the purpose of designing efficient and reliable data transmission methods.

Programming language theory[edit]

Main article: Programming language theory

Programming language theory is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of programming languages and their individual features. It falls within the discipline of computer science, both depending on and affecting mathematics, software engineering, and linguistics. It is an active research area, with numerous dedicated academic journals.

Formal methods[edit]

Main article: Formal methods

Formal methods are a particular kind of mathematically based technique for the specification, development and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design. They form an important theoretical underpinning for software engineering, especially where safety or security is involved. Formal methods are a useful adjunct to software testing since they help avoid errors and can also give a framework for testing. For industrial use, tool support is required. However, the high cost of using formal methods means that they are usually only used in the development of high-integrity and life-critical systems, where safety or security is of utmost importance. Formal methods are best described as the application of a fairly broad variety of theoretical computer science fundamentals, in particular logic calculi, formal languages, automata theory, and program semantics, but also type systems and algebraic data types to problems in software and hardware specification and verification.

Computer systems[edit]

Computer architecture and computer engineering[edit]

Main articles: Computer architecture and Computer engineering

Computer architecture, or digital computer organization, is the conceptual design and fundamental operational structure of a computer system. It focuses largely on the way by which the central processing unit performs internally and accesses addresses in memory.[48] The field often involves disciplines of computer engineering and electrical engineering, selecting and interconnecting hardware components to create computers that meet functional, performance, and cost goals.

Computer performance analysis[edit]

Computer science deals with the theoretical foundations of information and computation, together with practical techniques for the implementation and application of these foundations.

The German military used the Enigma machine (shown here) during World War II for communications they wanted kept secret. The large-scale decryption of Enigma traffic at Bletchley Park was an important factor that contributed to Allied victory in WWII.[20]

Scientific Computing :Group Website : Staff

Centre for Scientific Computing :Website

The niche of the Scientific Computing Group (SC) is the implementation of contemporary, cutting-edge research from physical sciences (including applied mathematics, numerical analysis and fundamental physics) and contemporary high-performance computing (HPC) methodologies, in technology, engineering and applied science applications.

Our methodologies include:

  • high-resolution, shock-capturing Riemann problem-based numerical schemes,
  • mesh generation and moving boundaries using Cartesian cut-cell and ghost-fluid approaches,
  • hierarchical, structured adaptive mesh refinement,
  • parallel computing using MPI and algorithm/code implementations on graphical processing units (GPGPUs).


Research is funded mainly by industrial projects which include companies such as ORICA Mining Services, Schlumberger Cambridge Research, Boeing Research and Technology, Jaguar Land Rover, AWE Aldermaston and BAE Systems.  The projects include a wide range of topics in pure and applied physics including the determination of equations of state for hydrocodes by means of ab-initio atomic-level modelling, atmospheric dispersion of pollutants, anti-icing of aircraft, heavy oil recovery, coupled reactive two-phase flow and elastoplastic material algorithms, advanced vehicle simulation and many others of importance for industry.   

The Group also supports a Masters (MPhil) degree on Scientific Computing and an advanced training programme which includes short courses and summer schools at a national and international level, such as the EPSRC Autumn Academy on High Performance Computing and the NCAS (National Centre for Atmospheric Science) Climate Modelling Summer School.

One thought on “The Third Branch Of Physics Essays On Scientific Computing Msc

Leave a Reply

Your email address will not be published. Required fields are marked *